SystemC Implementation of Stochastic Petri Nets for Simulation and Parameterization of Biological Networks

Author:

Bombieri Nicola1,Scaffeo Silvia1,Mastrandrea Antonio1,Caligola Simone1,Carlucci Tommaso2,Fummi Franco1,Laudanna Carlo2,Constantin Gabriela2,Giugno Rosalba1

Affiliation:

1. Dept. Computer Science - Univ. Verona, Italy

2. Dept. Medicine - Univ. Verona, Italy

Abstract

Model development and simulation of biological networks is recognized as a key task in Systems Biology. Integrated with in vitro and in vivo experimental data, network simulation allows for the discovery of the dynamics that regulate biological systems. Stochastic Petri Nets (SPNs) have become a widespread and reference formalism to model metabolic networks thanks to their natural expressiveness to represent metabolites, reactions, molecule interactions, and simulation randomness due to system fluctuations and environmental noise. In the literature, starting from the network model and the complete set of system parameters, there exist frameworks that allow for dynamic system simulation. Nevertheless, they do not allow for automatic model parameterization, which is a crucial task to identify, in silico, the network configurations that lead the model to satisfy specific temporal properties. To cover such a gap, this work first presents a framework to implement SPN models into SystemC code. Then, it shows how the framework allows for automatic parameterization of the networks. The user formally defines the network properties to be observed and the framework automatically extrapolates, through Assertion-based Verification (ABV), the parameter configurations that satisfy such properties. We present the results obtained by applying the proposed framework to model the complex metabolic network of the purine metabolism. We show how the automatic extrapolation of the system parameters allowed us to simulate the model under different conditions, which led to the understanding of behavioral differences in the regulation of the entire purine network. We also show the scalability of the approach through the modeling and simulation of four biological networks, each one with different structural characteristics.

Funder

ERC advanced

IMPEDE

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3