Network pharmacology and molecular docking-based prediction of active compounds and mechanisms of action of Cnidii Fructus in treating atopic dermatitis

Author:

Khan Shakeel Ahmad,Wu Ying,Li Amy Sze-Man,Fu Xiu-Qiong,Yu Zhi-Ling

Abstract

Abstract Background Atopic dermatitis (AD) is a common inflammatory skin disease that compromises the skin's barrier function and capacity to retain moisture. Cnidii Fructus (CF), the dried fruits of Cnidium monnieri, has long been used to treat atopic dermatitis (AD) in China. However, the anti-AD compounds and mechanisms of CF are not fully understood. In this study, we evaluated the active compounds and molecular targets of CF in treating AD. Methods The Traditional Chinese Medicine Systems Pharmacology database was used to acquire information regarding the compounds that occur in the herb. Targets of these compounds were predicted using the SwissTargetPrediction website tool. AD-related genes were collected from the GeneCards database. Gene ontology (GO) enrichment analysis and KEGG pathway analysis of proteins that are targeted by active compounds of CF and encoded by AD-related genes were performed using Database for Annotation, Visualization, and Integrated Discovery Bioinformatics Resources. A “compound-target” network was constructed and analyzed using Cytoscape Software. Molecular docking was performed using BIOVIA Discovery Studio Visualizer and AutoDock Vina. Results We identified 19 active compounds in CF, 532 potential targets for these compounds, and 1540 genes related to AD. Results of GO enrichment indicated that CF affects biological processes and molecular functions, such as inflammatory response and steroid hormone receptor activity, which may be associated with its anti-AD effects. KEGG pathway analyses showed that PI3K-Akt signaling, calcium signaling, Rap1 signaling, and cAMP signaling pathways are the main pathways involved in the anti-AD effects of CF. Molecular docking analyses revealed that the key active compounds in CF, such as (E)-2,3-bis(2-keto-7-methoxy-chromen-8-yl)acrolein, ar-curcumene, and diosmetin, can bind the main therapeutic targets AKT1, SRC, MAPK3, EGFR, CASP3, and PTGS2. Conclusions Results of the present study establish a foundation for further investigation of the anti-AD compounds and mechanisms of CF and provide a basis for developing modern anti-AD agents based on compounds that occur in CF.

Funder

Shenzhen Municipal Science and Technology Innovation Council

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Natural Science Foundation of Guangdong Province,China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3