Luteolin ameliorates lipopolysaccharide-induced microcirculatory disturbance through inhibiting leukocyte adhesion in rat mesenteric venules

Author:

Su Jie,Xu Han-Ting,Yu Jing-Jing,Yan Mei-Qiu,Wang Ting,Wu Ya-Jun,Li Bo,Lu Wen-Jie,Wang Chuan,Lei Shan-Shan,Chen Si-Min,Chen Su-Hong,Lv Gui-Yuan

Abstract

AbstractBackgroundMicrocirculatory disturbance is closely associated with multiple diseases such as ischemic and septic stroke. Luteolin (3,4,5,7-tetrahydroxyflavone) is a vascular protective flavonoid present in several dietary foods. However, how luteolin plays a role in microcirculatory disturbance is still unknown. The purpose of this study was to find out the influence of luteolin on the lipopolysaccharide (LPS)-induced microcirculatory disturbance, focusing on its effect on leukocyte adhesion and the underlying mechanism of this effect.MethodsAfter injecting LPS into rats, we used an inverted intravital microscope to observe the velocity of red blood cells in venules, numbers of leukocytes adherent to and emigrated across the venular wall, hydrogen peroxide production in venular walls and mast cell degranulation. Intestinal microcirculation blood flow was measured by High-resolution Laser Doppler Perfusion Imaging. Histological changes of small intestine and mesenteric arteries were evaluated. Additionally, cell adhesion stimulated by LPS was tested on EA.hy926 and THP-1 cells. The production of pro-inflammatory cytokines, adhesion molecules and the activation of TLR4/Myd88/NF-κB signaling pathway were determined.ResultsThe results showed luteolin significantly inhibited LPS-induced leukocyte adhesion, hydrogen peroxide production and mast cell degranulation, and increased intestinal microcirculation blood flow and ameliorated pathological changes in the mesenteric artery and the small intestine. Furthermore, luteolin inhibited the release of pro-inflammatory cytokines, the expression of TLR4, Myd88, ICAM-1, and VCAM-1, the phosphorylation of IκB-α and NF-κB/p65 in LPS stimulated EA.hy926.ConclusionsOur findings revealed that it is likely that luteolin can ameliorate microcirculatory disturbance. The inhibitory effects of luteolin on the leukocyte adhesion stimulated by LPS, which participates in the development of microcirculatory disturbance, are mediated through the regulation of the TLR4/Myd88/NF-κB signaling pathway.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3