Anti-Zika virus activity and chemical characterization by ultra-high performance liquid chromatography (UPLC-DAD-UV-MS) of ethanol extracts in Tecoma species

Author:

Reis Adriana Cotta Cardoso,Silva Breno Mello,de Moura Hélia Maria Marques,Pereira Guilherme Rocha,Brandão Geraldo CélioORCID

Abstract

Abstract Background Plant species from the genus Tecoma are found in tropical and subtropical regions around the world. Some of them are grown as ornamental plants and others can be used as medicinal plants. In the present study, ethanolic extracts from trunks and leaves of Tecoma species were tested in vitro using assays against the Zika virus. Methods There was a total of 8 extracts obtained from different anatomical parts of three Tecoma species. The Tecoma castaneifolia, T. garrocha, T. stans var. angustata and T. stans var. stans were prepared by percolation with ethanol. The antiviral activity was assayed in vitro against the Zika virus by the MTT colorimetric method (n = 3). The UPLC-DAD-MS analysis of ethanolic extracts was performed from all the studied species. The biofractionation of T. stans var. stans trunk extract using different separation techniques led to the isolation of crenatoside compound. Results Ethanolic extract from Tecoma species leaves were more active against the Zika virus (EC50 149.90 to 61.25 μg/mL) when compared to the trunk extracts tested (EC50 131.0 to 66.79 μg/mL and two were not active). The ethyl acetate and aqueous fractions obtained from T. stans var. stans trunk were active against the Zika virus with EC50 values of 149.90 and 78.98 μg/mL, respectively. Crenatoside is a phenylethanoid glycoside isolated from the ethyl acetate of T. stans var. stans trunk extract. This compound was tested and exhibited EC50 34.78 μM (21.64 μg/mL), thus demonstrating a better result than the original ethanolic extracts as well as others extracts of Tecoma species, and it was more active than the positive control, ribavirin (386.84 μM). Furthermore, its selectivity index was at least 2.5 times higher than the tested ethanolic extracts and 11.1 times more potent than ribavirin. Conclusion The Tecoma species demonstrated interesting in vitro activity against the Zika virus. The crenatoside, phenylethanoid glycoside that was for the first time isolated from Tecoma stans var. stans, exhibited a potent and relevant anti-Zika virus activity, being more active than ribavirin (positive control). The data show that crenatoside, was a promising compound with in vitro antiviral activity against the Zika virus.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Reference45 articles.

1. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/zika-virus. Accessed: 2019 Mar 01.

2. Brasil. Ministério da Saúde - Boletim epidemiológico 47. 2018. http://portalarquivos2.saude.gov.br/images/pdf/2018/novembro/12/2018-034.pdf. Accessed: 2019 Mar 01.

3. Chattopadhyay D, Naik TN. Antivirals of ethnomedicinal origin: structure-activity relationship and scope. Mini-Reviews Med Chem. 2007;7(3):275–301.

4. Oliveira AB, Raslan DS, Miraglia MCM, Mesquita AAL, Zani CL, Ferreira DT, et al. Chemical structures and biological activities of naphthoquinones from Brazilian Bignoniaceae. Quim Nova. 1990;13:302–7.

5. Brandão GC, Kroon EG, Souza Filho JD, Oliveira AB. Antiviral activity of Fridericia formosa (bureau) LG Lohmann (Bignoniaceae) extracts and constituents. J Trop Med. 2017. https://doi.org/10.1155/2017/6106959.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3