Author:
Cai Weiye,Sun Bin,Song Chao,Liu Fei,Wu Zhengliang,Liu Zongchao
Abstract
Abstract
Background
In mouse, it was discovered that resveratrol (Res) enhanced osteoporosis (OP) by boosting osteogenesis. Besides, Res can also have an impact on MC3T3-E1 cells, which are crucial for the control of osteogenesis and thus increase osteogenesis. Although some articles have discovered that Res enhanced autophagy to promote the value-added differentiation of MC3T3, it is unclear exactly how this affects the process of osteogenesis in mouse. Therefore, we will show that Res encourages MC3T3-E1 proliferation and differentiation in mouse pre-osteoblasts and further investigate the autophagy-related mechanism for this impact.
Methods
(1) MC3T3-E1 cells were separated into blank control group and various concentrations (0.01, 0.1, 1, 10, 100µmol/L) of group in order to determine the ideal Res concentration. In the Res group, Cell Counting Kit-8 (CCK-8) was used to measure the proliferation activity of pre-osteoblasts in mice in each group after resveratrol intervention. Alkaline Phosphatase (ALP) and alizarin red staining were used to gauge the degree of osteogenic differentiation, and RT-qPCR was used to measure the expression levels of Runx2 and OCN in the osteogenic differentiation ability of the cells. (2) In the experiment, four groups were set up: the control group, 3MA group, Res group, and Res + 3MA group. To examine cell mineralization, ALP and alizarin red staining were utilized. RT-qPCR and Western blot detection of cell autophagy activity levels and osteogenic differentiation capacity in each group following intervention.
Results
(1) Resveratrol might increase the number of mice pre-osteoblast, with the impact being most pronounced at 10µmol/L (P < 0.05). The nodules developed substantially more often than in the blank control group, and Runx2 and OCN expressions significantly increased (P < 0.05). (2) In contrast to the Res group, after 3MA purine blocked autophagy, the Res + 3MA group’s alkaline phosphatase staining and the development of mineralized nodules were reduced. Runx2, OCN, LC3II / LC3I expression decreased, p62 expression increased (P < 0.05).
Conclusion
The present study partially or indirectly demonstrated that Res may, through increased autophagy, induce osteogenic differentiation of MC3T3-E1 cells.
Funder
Luzhou’s major scientific and technology research and development project
Joint Innovation Special of the Sichuan Provincial Science and Technology Plan
the Sichuan Science and Technology Department Project Development Project
the Program for Special project of Traditional Chinese Medicine scientific research of Sichuan Science and Traditional Chinese Medicine Administration
the Program for Luzhou Municipal People’s Government - Southwest Medical University science and technology strategic cooperation climbing project
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献