Properties of PMMA/clay nanocomposites prepared using various compatibilizers

Author:

Kumar Manish,Arun S,Upadhyaya Pradeep,Pugazhenthi G

Abstract

Abstract Background In the fabrication of polymer/clay nanocomposites, the compatibilizer plays a vital role in altering the properties of nanocomposite systems. The present work primarily deals with the development of poly(methyl methacrylate) (PMMA)/clay nanocomposites containing different compatibilizers (PP-g-MA, PE-g-MA and PS-g-MA) with 5 wt.% nanoclay. Methods The various PMMA nanocomposites were prepared by melt intercalation method using twin screw extruder followed by injection moulding to make specimens for mechanical testing. Results The mechanical, thermal and morphological properties of nanocomposites were evaluated by tensile test, impact, hardness, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The intercalated structure of the PMMA nanocomposites is validated by XRD and TEM analysis. The results are found to be good agreement with each other. Conclusions The TGA data demonstrate that PMMA nanocomposites exhibit enhanced thermal stability of 22-36 °C with respect to pure PMMA, at 50% weight loss is considered as point of reference. The PMMA nanocomposite prepared with PS-g-MA compatibilizer promotes adequate interface adhesion between the nanoclay and polymer matrix. As a result, PMMA-5-PS sample displays improved mechanical properties over PMMA-5-PP and PMMA-5-PE samples. The maximum improvement of tensile strength, Young’s modulus and hardness for the PMMA-5-PS nanocomposites over PMMA-5-PE is estimated to be 8, 2 and 26 %, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3