Structural, dielectric, and antimicrobial evaluation of PMMA/CeO2 for optoelectronic devices

Author:

Bakr Ahmed M.,Darwish Abdelfattah,Azab A. A.,El Awady Mohamed E.,Hamed Ahmed A.,Elzwawy AmirORCID

Abstract

AbstractIn the current report, we have successfully synthesized nanocomposites of PMMA incorporating different doping of CeO2 through a chemical approach. XRD results reflects decent matching for CeO2 nanoparticles with 29 nm crystallite size. FTIR spectroscopy demonstrates the characteristic functional groups validating the successful formation of the composite. The optical study of PMMA and the nanocomposites has proven that the optical properties such as band gap, refractive index, optical permittivity, and loss tangent factor are affected by adding CeO2 to the PMMA matrix.The peak residing around 420 nm by UV measurements is allocated to occurring electrons photoexcitation from the valence to conduction band inherent in CeO2. The dielectric measurements were achieved using broadband dielectric spectroscopy upon a wide span of frequencies (10–1–107 Hz) and within temperatures from − 10 to 80 °C with a step of 10 °C. The permittivity decreases by adding CeO2 and the dielectric parameters are thermally enhanced, however, the temperature influence is based on CeO2 content, the higher the CeO2 amount, the higher the influence of temperature. The results of the nanocomposites revealed antibacterial activity counter to gram-positive bacteria strain (S. aureus, and B. subtilis), and gram-negative bacteria (E. coli, and K. pneumoniae), yeast (C. albicans, as well as fungi (A. niger). Inherently, the change in CeO2 concentration from 0.01 to 0.1 wt% delivers maximum influence against gram-negative bacteria. These PMMA CeO2-doped composites are beneficial for optoelectronic areas and devices.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3