Gut microbiota–derived metabolite 3-idoleacetic acid together with LPS induces IL-35+ B cell generation

Author:

Su Xiaomin,Zhang Minying,Qi Houbao,Gao Yunhuan,Yang Yazheng,Yun Huan,Zhang Qianjing,Yang Xiaorong,Zhang Yuan,He Jiangshan,Fan Yaqi,Wang Yuxue,Guo Pei,Zhang Chunze,Yang RongcunORCID

Abstract

Abstract Background IL-35–producing Bregs and Treg cells critically regulate chronic illnesses worldwide via mechanisms related to disrupting the gut microbiota composition. However, whether the gut microbiota regulates these IL-35+ cells remains elusive. We herein investigated the regulatory effects of the gut microbiota on IL-35+ cells by using genetically modified mouse models of obesity. Results We first found that gut Reg4 promoted resistance to high-fat diet-induced obesity. Using 16S rRNA sequencing combined with LC-MS (liquid chromatography–mass spectrometry)/MS, we demonstrated that gut Reg4 associated with bacteria such as Lactobacillus promoted the generation of IL-35+ B cells through 3-idoleacetic acid (IAA) in the presence of LPS. HuREG4IECtg mice fed a high-fat diet exhibited marked IL-35+ cell accumulation in not only their adipose tissues but also their colons, whereas decreased IL-35+ cell accumulation was observed in the adipose and colon tissues of Reg4 knockout (KO) mice. We also found that Reg4 mediated HFD-induced obesity resistance via IL-35. Lower levels of IAA were also detected in the peripheral blood of individuals with obesity compared with nonobese subjects. Mechanistically, IAA together with LPS mediated IL-35+ B cells through PXR and TLR4. KO of PXR or TLR4 impaired the generation of IL-35+ B cells. Conclusion Together, IAA and LPS induce the generation of IL-35+ B cells through PXR and TLR4.

Funder

National Natural Science Foundation of China

Tianjin Science and Technology Committee

Ministry of Science and Technology

Nankai University

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3