New insights into the impact of microbiome on horizontal and vertical transmission of a tick-borne pathogen

Author:

Du Li-Feng,Zhang Ming-Zhu,Yuan Ting-Ting,Ni Xue-Bing,Wei Wei,Cui Xiao-Ming,Wang Ning,Xiong Tao,Zhang Jie,Pan Yu-Sheng,Zhu Dai-Yun,Li Liang-Jing,Xia Luo-Yuan,Wang Tian-Hong,Wei Ran,Liu Hong-Bo,Sun Yi,Zhao Lin,Lam Tommy Tsan-Yuk,Cao Wu-Chun,Jia Na

Abstract

Abstract Background The impact of host skin microbiome on horizontal transmission of tick-borne pathogens , and of pathogen associated transstadial and transovarial changes in tick microbiome are largely unknown, but are important to control increasingly emerging tick-borne diseases worldwide. Methods Focusing on a rickettsiosis pathogen, Rickettsia raoultii, we used R. raoultii-positive and R. raoultii-negative Dermacentor spp. tick colonies to study the involvement of skin microbiota in cutaneous infection with rickettsiae in laboratory mice, and the function of the tick microbiome on maintenance of rickettsiae through all tick developmental stages (eggs, larvae, nymphs, adults) over two generations. Results We observed changes in the skin bacteria community, such as Chlamydia, not only associated with rickettsial colonization but also with tick feeding on skin. The diversity of skin microbiome differed between paired tick-bitten and un-bitten sites. For vertical transmission, significant differences in the tick microbiota between pathogenic rickettsia-positive and -negative tick chorts was observed across all developmental stages at least over two generations, which appeared to be a common pattern not only for R. raoultii but also for another pathogenic species, Candidatus Rickettsia tarasevichiae. More importantly, bacterial differences were complemented by functional shifts primed for genetic information processing during blood feeding. Specifically, the differences in tick microbiome gene repertoire between pathogenic Rickettsia-positive and -negative progenies were enriched in pathways associated with metabolism and hormone signals during vertical transmission. Conclusions We demonstrate that host skin microbiome might be a new factor determining the transmission of rickettsial pathogens through ticks. While pathogenic rickettsiae infect vertebrate hosts during blood-feeding by the tick, they may also manipulate the maturation of the tick through changing the functional potential of its microbiota over the tick’s life stages. The findings here might spur the development of new-generation control methods for ticks and tick-borne pathogens.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3