Author:
Abraham Nabil M.,Liu Lei,Jutras Brandon Lyon,Yadav Akhilesh K.,Narasimhan Sukanya,Gopalakrishnan Vissagan,Ansari Juliana M.,Jefferson Kimberly K.,Cava Felipe,Jacobs-Wagner Christine,Fikrig Erol
Abstract
Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood.Ixodes scapularisticks harbor numerous human pathogens, includingAnaplasma phagocytophilum,the agent of human granulocytic anaplasmosis. We now demonstrate thatA. phagocytophilummodifies theI. scapularismicrobiota to more efficiently infect the tick.A. phagocytophiluminduces ticks to expressIxodes scapularisantifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles forAnaplasmacolonization. Mechanistically, IAFGP binds the terminald-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.
Publisher
Proceedings of the National Academy of Sciences
Cited by
204 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献