Statistical modeling of gut microbiota for personalized health status monitoring

Author:

Zhu Jinlin,Xie Heqiang,Yang Zixin,Chen Jing,Yin Jialin,Tian Peijun,Wang Hongchao,Zhao Jianxin,Zhang Hao,Lu Wenwei,Chen Wei

Abstract

Abstract Background The gut microbiome is closely associated with health status, and any microbiota dysbiosis could considerably impact the host’s health. In addition, many active consortium projects have generated many reference datasets available for large-scale retrospective research. However, a comprehensive monitoring framework that analyzes health status and quantitatively present bacteria-to-health contribution has not been thoroughly investigated. Methods We systematically developed a statistical monitoring diagram for personalized health status prediction and analysis. Our framework comprises three elements: (1) a statistical monitoring model was established, the health index was constructed, and the health boundary was defined; (2) healthy patterns were identified among healthy people and analyzed using contrast learning; (3) the contribution of each bacterium to the health index of the diseased population was analyzed. Furthermore, we investigated disease proximity using the contribution spectrum and discovered multiple multi-disease-related targets. Results We demonstrated and evaluated the effectiveness of the proposed monitoring framework for tracking personalized health status through comprehensive real-data analysis using the multi-study cohort and another validation cohort. A statistical monitoring model was developed based on 92 microbial taxa. In both the discovery and validation sets, our approach achieved balanced accuracies of 0.7132 and 0.7026, and AUC of 0.80 and 0.76, respectively. Four health patterns were identified in healthy populations, highlighting variations in species composition and metabolic function across these patterns. Furthermore, a reasonable correlation was found between the proposed health index and host physiological indicators, diversity, and functional redundancy. The health index significantly correlated with Shannon diversity ($$\rho = 0.07$$ ρ = 0.07 ) and species richness ($$\rho = 0.44$$ ρ = 0.44 ) in the healthy samples. However, in samples from individuals with diseases, the health index significantly correlated with age ($$\rho = 0.12$$ ρ = 0.12 ), species richness ($$\rho = 0.46$$ ρ = 0.46 ), and functional redundancy ($$\rho = - 0.16$$ ρ = - 0.16 ). Personalized diagnosis is achieved by analyzing the contribution of each bacterium to the health index. We identified high-contribution species shared across multiple diseases by analyzing the contribution spectrum of these diseases. Conclusions Our research revealed that the proposed monitoring framework could promote a deep understanding of healthy microbiomes and unhealthy variations and served as a bridge toward individualized therapy target discovery and precise modulation.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3