Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations

Author:

Du Rubing,Xiong Wu,Xu Lei,Xu Yan,Wu Qun

Abstract

Abstract Background Fermented foods are considered to be beneficial for human health. Secondary metabolites determined by biosynthetic gene clusters (BGCs) are precious bioactive compounds with various biological activities. However, the diversity and distribution of the biosynthetic potential of secondary metabolites in global food fermentations remain largely unknown. In this study, we performed a large-scale and comprehensive investigation for the BGCs in global food fermentations by metagenomics analysis. Results We recovered 653 bacterial metagenome-assembled genomes (MAGs) from 367 metagenomic sequencing datasets covering 15 general food fermentation types worldwide. In total, 2334 secondary metabolite BGCs, including 1003 novel BGCs, were identified in these MAGs. Bacillaceae, Streptococcaceae, Streptomycetaceae, Brevibacteriaceae and Lactobacillaceae contained high abundances of novel BGCs (≥ 60 novel BGCs). Among 2334 BGCs, 1655 were habitat-specific, originating from habitat-specific species (80.54%) and habitat-specific genotypes within multi-habitat species (19.46%) in different food fermentation types. Biological activity analysis suggested that 183 BGC-producing secondary metabolites exhibited high probabilities of antibacterial activity (> 80%). These 183 BGCs were distributed across all 15 food fermentation types, and cheese fermentation contained the most BGC number. Conclusions This study demonstrates that food fermentation systems are an untapped reservoir of BGCs and bioactive secondary metabolites, and it provides novel insights into the potential human health benefits of fermented foods.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National First-Class Discipline Program of Light Industry Technology and Engineering

Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3