An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination

Author:

Gunduz HakanORCID

Abstract

AbstractIn this study, the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based, deep-learning (LSTM) and ensemble learning (LightGBM) models. These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics. While the first experiments directly used the own stock features as the model inputs, the second experiments utilized reduced stock features through Variational AutoEncoders (VAE). In the last experiments, in order to grasp the effects of the other banking stocks on individual stock performance, the features belonging to other stocks were also given as inputs to our models. While combining other stock features was done for both own (named as allstock_own) and VAE-reduced (named as allstock_VAE) stock features, the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination. As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model, the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675. Although the classification results achieved with both feature types was close, allstock_VAE achieved these results using nearly 16.67% less features compared to allstock_own. When all experimental results were examined, it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features. It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features.

Publisher

Springer Science and Business Media LLC

Subject

Management of Technology and Innovation,Finance

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3