Author:
Olaokun Oyinlola O,McGaw Lyndy J,Eloff Jacobus N,Naidoo Vinny
Abstract
Abstract
Background
Some Ficus species have been used in traditional African medicine in the treatment of diabetes. The antidiabetic potential of certain species has been confirmed in vivo but the mechanism of activity remains uncertain. The aim of this study was to determine the activity and to investigate the mechanism of antidiabetic activity of ten selected Ficus species through inhibition of α-amylase and α-glucosidase activity, and the possible relationship between these activities, the total polyphenolic content and the antioxidant activity.
Methods
Dried acetone leaf extracts were reconstituted with appropriate solvents and used to determine total polyphenolic content antioxidant activity, α-amylase and α-glucosidase inhibitory activity.
Results
The crude acetone extract of F. lutea had the highest polyphenolic content (56.85 ± 1.82 mg GAE/g of dry material) and the strongest antioxidant activity with a TEAC value of 4.80 ± 0.90. The antioxidant activity of the acetone extracts of the Ficus species may not be ascribed to total polyphenolic content alone. The crude extract at a concentration of 0.5 mg/ml of F. lutea (64.3 ± 3.6%) had the best α-glucosidase (sucrase) inhibitory activity. The EC50 of F. lutea (290 ± 111 μg/ml) was not significantly different from that of F. sycomorus (217 ± 69 μg/ml). The α-amylase inhibitory activity of F. lutea (95.4 ± 1.2%) at a concentration of 1 mg/ml was the highest among the Ficus species screened. The EC50 for F. lutea (9.42 ± 2.01 μ g/ml), though the highest, was not significantly different (p < 0.05) from that of F. craterostoma and F. natalensis. It was apparent that the crude acetone extract of F. lutea is a partially non-competitive inhibitor of α-amylase and α-glucosidase. Based on correlation coefficients polyphenolics may be responsible for α-glucosidase activity but probably not for α-amylase activity.
Conclusion
Antidiabetic activity potential via inhibition of α-amylase and α-glucosidase was discovered in Ficus lutea which has not been previously reported. The acetone extract of the leaves was high in total polyphenolic content and antioxidant activity, and was a potent inhibitor of α-amylase activity. Research is underway to isolate the active compound(s) responsible for the antidiabetic activity and to confirm the in vitro antidiabetic activity and to investigate in vitro toxicity.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,General Medicine
Reference73 articles.
1. Anonymous: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. 1999, Geneva: Report of a WHO Consultation
2. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamota K, Matsuoka T-A, Matsuhisa M, Yamasaki Y: Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007, 9: 355-366.
3. Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK: Antidiabetic agents from medicinal plants. Curr Med Chem. 2006, 13: 1203-1218.
4. Jain S, Saraf S: Review on Type 2 diabetes mellitus—its global prevalence and therapeutic strategies. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2010, 4: 48-56.
5. Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004, 27: 1047-1053.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献