Author:
Amoo Stephen O,Aremu Adeyemi O,Moyo Mack,Van Staden Johannes
Abstract
Abstract
Background
Medicinal plants are possible sources for future novel antioxidant compounds in food and pharmaceutical formulations. Recent attention on medicinal plants emanates from their long historical utilisation in folk medicine as well as their prophylactic properties. However, there is a dearth of scientific data on the efficacy and stability of the bioactive chemical constituents in medicinal plants after prolonged storage. This is a frequent problem in African Traditional Medicine.
Methods
The phytochemical, antioxidant and acetylcholinesterase-inhibitory properties of 21 medicinal plants were evaluated after long-term storage of 12 or 16 years using standard in vitro methods in comparison to freshly harvested materials.
Results
The total phenolic content of Artemisia afra, Clausena anisata, Cussonia spicata, Leonotis intermedia and Spirostachys africana were significantly higher in stored compared to fresh materials. The flavonoid content were also significantly higher in stored A. afra, C. anisata, C. spicata, L. intermedia, Olea europea and Tetradenia riparia materials. With the exception of Ekebergia capensis and L. intermedia, there were no significant differences between the antioxidant activities of stored and fresh plant materials as measured in the β- carotene-linoleic acid model system. Similarly, the EC50 values based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay were generally lower for stored than fresh material. Percentage inhibition of acetylcholinesterase was generally similar for both stored and fresh plant material. Stored plant material of Tetradenia riparia and Trichilia dregeana exhibited significantly higher AChE inhibition than the fresh material.
Conclusions
The current study presents evidence that medicinal plants can retain their biological activity after prolonged storage under dark conditions at room temperature. The high antioxidant activities of stable bioactive compounds in these medicinal plants offer interesting prospects for the identification of novel principles for application in food and pharmaceutical formulations.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,General Medicine
Reference38 articles.
1. Bouayed J, Piri K, Rammal H, Dicko A, Desor F, Younos C, Soulimani R: Comparative evaluation of the antioxidant potential of some Iranian medicinal plants. Food Chem. 2007, 104: 364-368. 10.1016/j.foodchem.2006.11.069.
2. Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H, Debbache N, Atmani D: Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009, 112: 303-309. 10.1016/j.foodchem.2008.05.077.
3. Hoozesmans JJM, Veerhuis R, Rozemuller JM, Eikelenboom P: Neuroinflammation and regeneration in the in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci. 2006, 24: 157-165. 10.1016/j.ijdevneu.2005.11.001.
4. Ndhlala AR, Aremu AO, Moyo M, Amoo SO, Van Staden J: Acetylcholineterase inhibitors from plant sources: friends or foes?. Cholinesterase: Production, Uses and Health Effects. Edited by: White CJ, Tait JE. 2012, Nova, New York, in press. ISBN: 978-1-62100-673-2
5. Howes MJ-R, Houghton PJ: Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav. 2003, 75: 513-527. 10.1016/S0091-3057(03)00128-X.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献