Author:
Wilcox Cathy B,Feddes Grace O,Willett-Brozick Joan E,Hsu Lih-Ching,DeLoia Julie A,Baysal Bora E
Abstract
Abstract
Background
Ovarian cancer (OvCa) most often derives from ovarian surface epithelial (OSE) cells. Several lines of evidence strongly suggest that increased exposure to progesterone (P4) protects women against developing OvCa. However, the underlying mechanisms of this protection are incompletely understood.
Methods
To determine downstream gene targets of P4, we established short term in vitro cultures of non-neoplastic OSE cells from six subjects, exposed the cells to P4 (10-6 M) for five days and performed transcriptional profiling with oligonucleotide microarrays containing over 22,000 transcripts.
Results
We identified concordant but modest gene expression changes in cholesterol/lipid homeostasis genes in three of six samples (responders), whereas the other three samples (non-responders) showed no expressional response to P4. The most up-regulated gene was TMEM97 which encodes a transmembrane protein of unknown function (MAC30). Analyses of outlier transcripts, whose expression levels changed most significantly upon P4 exposure, uncovered coordinate up-regulation of 14 cholesterol biosynthesis enzymes, insulin-induced gene 1, low density lipoprotein receptor, ABCG1, endothelial lipase, stearoyl- CoA and fatty acid desaturases, long-chain fatty-acyl elongase, and down-regulation of steroidogenic acute regulatory protein and ABCC6. Highly correlated tissue-specific expression patterns of TMEM97 and the cholesterol biosynthesis genes were confirmed by analysis of the GNF Atlas 2 universal gene expression database. Real-time quantitative RT-PCR analyses revealed 2.4-fold suppression of the TMEM97 gene expression in short-term cultures of OvCa relative to the normal OSE cells.
Conclusion
These findings suggest that a co-regulated transcript network of cholesterol/lipid homeostasis genes and TMEM97 are downstream targets of P4 in normal OSE cells and that TMEM97 plays a role in cholesterol and lipid metabolism. The P4-induced alterations in cholesterol and lipid metabolism in OSE cells might play a role in conferring protection against OvCa.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference43 articles.
1. Dubeau L: Ovarian Cancer. The Metabolic & Molecular Basis of Inherited Disease. Edited by: Scriver CR, Beaudet AL, Sly WS, Valle D. 2001, New York :McGraw-Hill, 1091-1096. Eighth
2. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC: Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev. 2001, 22: 255-288. 10.1210/er.22.2.255.
3. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, Xu X, Hamilton TC: Focus on epithelial ovarian cancer. Cancer Cell. 2004, 5: 19-24. 10.1016/S1535-6108(04)00002-9.
4. Fathalla MF: Incessant ovulation–a factor in ovarian neoplasia?. Lancet. 1971, 2: 163-10.1016/S0140-6736(71)92335-X.
5. Risch HA: Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst. 1998, 90: 1774-1786. 10.1093/jnci/90.23.1774.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献