Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules

Author:

Kim Sue Youn,Yoon Jiyeon,Ko Young San,Chang Mee Soo,Park Jong-Wan,Lee Hee Eun,Kim Min A,Kim Ji Hun,Kim Woo Ho,Lee Byung Lan

Abstract

Abstract Background Although FOXO transcription factors may have an anti-angiogenic role, little is known about their role in tumor angiogenesis. The present study was performed to investigate the correlation between the constitutive expression of phosphorylated FOXO1 (pFOXO1) and angiogenesis in gastric cancer. Methods Immunohistochemistry was performed on tissue array slides containing 272 gastric carcinoma specimens, and the correlations between the cytoplasmic pFOXO1 expression in gastric cancer cells and CD34-immunopositive microvessel area (MVA) or the expressions of angiogenesis-related molecules were analyzed. In vitro analyses with Western blotting and semiquantitative reverse transcription-polymerase chain reaction were performed using the stable SNU-638 gastric cancer cell line transfected with lentivirus-delivered FOXO1 short hairpin RNA. Results The cytoplasmic expression of pFOXO1 in tumor cells was observed in 85% of gastric carcinoma cases, and was found to be positively associated with higher MVA (P = 0.048). Moreover, pFOXO1 expression was positively correlated with the expressions of several angiogenesis-related proteins, including hypoxia inducible factor-1α (HIF-1α, P = 0.003), vessel endothelial growth factor (P = 0.004), phosphorylated protein kinase B (P < 0.001), and nuclear factor-κB (P = 0.040). In contrast, the expression of pFOXO1 was not correlated with that of phosphorylated signal transducer and activator of transcription 3 or β-catenin. In addition, cell culture experiments showed that FOXO1 suppression increased the mRNA and protein expressions of HIF-1α. Conclusion Our results suggest that pFOXO1 expression in cancer cells plays a role in gastric cancer angiogenesis via mechanisms involving various angiogenesis-related molecules. Animal experiments are needed to confirm the anti-angiogenic role of FOXO1 in human gastric cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3