Comprehensive pan‐cancer analysis of mitochondrial outer membrane permeabilisation activity reveals positive immunomodulation and assists in identifying potential therapeutic targets for immunotherapy resistance

Author:

Chen Qingshan12,Gao Fenglin3,Wu Junwan14,Zhang Kaiming12ORCID,Du Tian12,Chen Yuhong1,Cai Ruizhao12,Zhao Dechang12,Deng Rong1,Tang Jun12ORCID

Affiliation:

1. State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer Sun Yat‐sen University Cancer Center Guangzhou China

2. Department of Breast Oncology Sun Yat‐sen University Cancer Center Guangzhou China

3. Department of Respiratory and Critical Care Medicine The Second Affiliated Hospital of Nanjing Medical University Nanjing China

4. Biotherapy Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer Sun Yat‐sen University Cancer Center Guangzhou China

Abstract

AbstractBackgroundMitochondrial outer membrane permeabilisation (MOMP) plays a pivotal role in cellular death and immune activation. A deeper understanding of the impact of tumour MOMP on immunity will aid in guiding more effective immunotherapeutic strategies.MethodsA comprehensive pan‐cancer dataset comprising 30 cancer‐type transcriptomic cohorts, 20 immunotherapy transcriptomic cohorts and three immunotherapy scRNA‐seq datasets was collected and analysed to determine the influence of tumour MOMP activity on clinical prognosis, immune infiltration and immunotherapy effectiveness. Leveraging 65 scRNA‐Seq datasets, the MOMP signature (MOMP.Sig) was developed to accurately reflect tumour MOMP activity. The clinical predictive value of MOMP.Sig was explored through machine learning models. Integration of the MOMP.Sig model and a pan‐cancer immunotherapy CRISPR screen further investigated potential targets to overcome immunotherapy resistance, which subsequently underwent clinical validation.ResultsOur research revealed that elevated MOMP activity reduces mortality risk in cancer patients, drives the formation of an anti‐tumour immune environment and enhances the response to immunotherapy. This finding emphasises the potential clinical application value of MOMP activity in immunotherapy. MOMP.Sig, offering a more precise indicator of tumour cell MOMP activity, demonstrated outstanding predictive efficacy in machine‐learning models. Moreover, with the assistance of the MOMP.Sig model, FOXO1 was identified as a core modulator that promotes immune resistance. Finally, these findings were successfully validated in clinical immunotherapy cohorts of skin cutaneous melanoma and triple‐negative breast cancer patients.ConclusionsThis study enhances our understanding of MOMP activity in immune modulation, providing valuable insights for more effective immunotherapeutic strategies across diverse tumours.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3