An improved deep learning approach and its applications on colonic polyp images detection

Author:

Wang WeiORCID,Tian Jinge,Zhang Chengwen,Luo Yanhong,Wang Xin,Li Ji

Abstract

Abstract Background Colonic polyps are more likely to be cancerous, especially those with large diameter, large number and atypical hyperplasia. If colonic polyps cannot be treated in early stage, they are likely to develop into colon cancer. Colonoscopy is easily limited by the operator’s experience, and factors such as inexperience and visual fatigue will directly affect the accuracy of diagnosis. Cooperating with Hunan children’s hospital, we proposed and improved a deep learning approach with global average pooling (GAP) in colonoscopy for assisted diagnosis. Our approach for assisted diagnosis in colonoscopy can prompt endoscopists to pay attention to polyps that may be ignored in real time, improve the detection rate, reduce missed diagnosis, and improve the efficiency of medical diagnosis. Methods We selected colonoscopy images from the gastrointestinal endoscopy room of Hunan children’s hospital to form the colonic polyp datasets. And we applied the image classification method based on Deep Learning to the classification of Colonic Polyps. The classic networks we used are VGGNets and ResNets. By using global average pooling, we proposed the improved approaches: VGGNets-GAP and ResNets-GAP. Results The accuracies of all models in datasets exceed 98%. The TPR and TNR are above 96 and 98% respectively. In addition, VGGNets-GAP networks not only have high classification accuracies, but also have much fewer parameters than those of VGGNets. Conclusions The experimental results show that the proposed approach has good effect on the automatic detection of colonic polyps. The innovations of our method are in two aspects: (1) the detection accuracy of colonic polyps has been improved. (2) our approach reduces the memory consumption and makes the model lightweight. Compared with the original VGG networks, the parameters of our VGG19-GAP networks are greatly reduced.

Funder

National Defense Pre-Research Foundation of China

National Natural Science Foundation of China

Scientific Research Foundation of Hunan Provincial Education Department

Natural Science Foundation of Hunan Province

Clinical Medical technology Innovation and Guidance Project of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3