SEA-NET: medical image segmentation network based on spiral squeeze-and-excitation and attention modules

Author:

Xiong Liangli,Yi Chen,Xiong Qiliang,Jiang Shaofeng

Abstract

Abstract Background Medical image segmentation is an important processing step in most of medical image analysis. Thus, high accuracy and robustness are required for them. The current deep neural network based medical segmentation methods have good effect on image with balanced foreground and background, but it will loss the characteristics of small targets on image with imbalanced foreground and background after multiple convolutions. Methods In order to retain the features of small targets in the deep network, we proposed a new medical image segmentation model based on the U-Net with squeeze-and-excitation and attention modules which form a spiral closed path,callled as Spiral Squeeze-and-Excitation and Attention NET (SEA-NET) in this paper. The segmentation model used squeeze-and-extraction modules to adjust the channel information to enhance the useful information and used attention modules to adjust the spatial information of the feature map to highlight the target area for small target segmentation when up-sampling. The deep semantic information is integrated into the shallow feature map by the attention model. Therefore, the deep semantic information cannot be scattered by continuous up-sampling. We used cross entropy loss + Tversky loss function for fast convergence and well processing the imbalanced data sets. Our proposed SEA-NET was tested on the brain MRI dataset LPBA40 and peripheral blood smear images. Conclusions On brain MRI data, the average value of the Dice coefficient we obtained reached 98.1$$\%$$ % . On the peripheral blood smear dataset, our proposed model has a good segmentation effect on adhesion cells. Results The experimental results proved that the proposed SEA-Net performed better than U-Net, U-Net++, etc. in medical image segmentation.

Funder

National Natural Science Foundation of China under Grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3