Author:
Singh Tinku,Mishra Suryanshi,Kalra Riya,Satakshi ,Kumar Manish,Kim Taehong
Abstract
AbstractCOVID-19 has resulted in a significant global impact on health, the economy, education, and daily life. The disease can range from mild to severe, with individuals over 65 or those with underlying medical conditions being more susceptible to severe illness. Early testing and isolation are vital due to the virus’s variable incubation period. Chest radiographs (CXR) have gained importance as a diagnostic tool due to their efficiency and reduced radiation exposure compared to CT scans. However, the sensitivity of CXR in detecting COVID-19 may be lower. This paper introduces a deep learning framework for accurate COVID-19 classification and severity prediction using CXR images. U-Net is used for lung segmentation, achieving a precision of 0.9924. Classification is performed using a Convulation-capsule network, with high true positive rates of 86% for COVID-19, 93% for pneumonia, and 85% for normal cases. Severity assessment employs ResNet50, VGG-16, and DenseNet201, with DenseNet201 showing superior accuracy. Empirical results, validated with 95% confidence intervals, confirm the framework’s reliability and robustness. This integration of advanced deep learning techniques with radiological imaging enhances early detection and severity assessment, improving patient management and resource allocation in clinical settings.
Funder
National Research Foundation of Korea
Institute of Information & Communications Technology Planning & Evaluation
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Cleveland Clinic. Coronavirus Disease (COVID-19): Symptoms, Causes and Prevention (2023, accessed 22 Jan 2023).
2. Aswathy, A. L., Anand, H. S. & Chandra, S. S. V. COVID-19 severity detection using machine learning techniques from CT-images. Evol. Intell. 16, 1423 (2022).
3. Organization, W. H. Coronavirus disease (covid-19). https://www.who.int/health-topics/coronavirus tab=tab_1 (2021, accessed 22 Jan 2023).
4. Ghaderzadeh, M. et al. Deep convolutional neural network-based computer-aided detection system for COVID-19 using multiple lung scans: Design and implementation study. J. Med. Internet Res. 23, e27468 (2021).
5. Ozsahin, I., Sekeroglu, B., Musa, M. S., Mustapha, M. T. & Uzun-Ozsahin, D. Review on diagnosis of COVID-19 from chest CT images using artificial intelligence. Comput. Math. Methods Med. 2020, 1–10 (2020).