Advancing medical imaging: detecting polypharmacy and adverse drug effects with Graph Convolutional Networks (GCN)

Author:

Dara Omer Nabeel,Ibrahim Abdullahi Abdu,Mohammed Tareq Abed

Abstract

AbstractPolypharmacy involves an individual using many medications at the same time and is a frequent healthcare technique used to treat complex medical disorders. Nevertheless, it also presents substantial risks of negative medication responses and interactions. Identifying and addressing adverse effects caused by polypharmacy is crucial to ensure patient safety and improve healthcare results. This paper introduces a new method using Graph Convolutional Networks (GCN) to identify polypharmacy side effects. Our strategy involves developing a medicine interaction graph in which edges signify drug-drug intuitive predicated on pharmacological properties and hubs symbolize drugs. GCN is a well-suited profound learning procedure for graph-based representations of social information. It can be used to anticipate the probability of medicate unfavorable impacts and to memorize important representations of sedate intuitive. Tests were conducted on a huge dataset of patients’ pharmaceutical records commented on with watched medicate unfavorable impacts in arrange to approve our strategy. Execution of the GCN show, which was prepared on a subset of this dataset, was evaluated through a disarray framework. The perplexity network shows the precision with which the show categories occasions. Our discoveries demonstrate empowering advance within the recognizable proof of antagonistic responses related with polypharmaceuticals. For cardiovascular system target drugs, GCN technique achieved an accuracy of 94.12%, precision of 86.56%, F1-Score of 88.56%, AUC of 89.74% and recall of 87.92%. For respiratory system target drugs, GCN technique achieved an accuracy of 93.38%, precision of 85.64%, F1-Score of 89.79%, AUC of 91.85% and recall of 86.35%. And for nervous system target drugs, GCN technique achieved an accuracy of 95.27%, precision of 88.36%, F1-Score of 86.49%, AUC of 88.83% and recall of 84.73%. This research provides a significant contribution to pharmacovigilance by proposing a data-driven method to detect and reduce polypharmacy side effects, thereby increasing patient safety and healthcare decision-making.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3