Predicting Drug Indications and Side Effects Using Deep Learning and Transfer Learning

Author:

Mohanapriya D.,Beena Dr.R.

Abstract

In the area of biology, text mining is commonly used since it obtains the unknown relationship among medicines, phenotypes and syndromes from much information. Enhanced Topic modeling with Improved Predict drug Indications and Side effects using Topic modelling and Natural language processing (ETP-IPISTON) has been employed to predict the drug-phenotype and drug-side effect association. Initially, corpus documents are collected from the literature data and the topics in the data are modeled using logistic Linear Discriminative Analysis (LDA) and Bi-directional Long-Short Term Memory-Conditional Random Field (BILSTM-CRF). From the sentences in the literature data, a dependency graph was constructed which discovered the relations between gene and drug. The product of the drug on phenotype rule was identified by the Gene Regulation Score (GRS) which creates the drug-topic probability matrix. The probability matrix and a syntactic distance measure was processed in Classification and Regression Tree (CART), Naïve Bayes (NB), logistic regression and Convolutional Neural Network (CNN) classifiers for estimating the drug-gene and drug-side effects. Besides the literature data, social media offers various promising resources with massive volume of data that can be useful in the drug-phenotype and drug-side effect association prediction. So in this paper, drug information with gene, disease and side effects are extracted from different social media such as Twitter, Facebook and LinkedIn and it can be used with the literature data to provide more relevant disease and drug relations. In addition to this, topic modeling with transfer learning is introduced to consider the element categories, probability of overlapping elements and deep contextual significance of a text for better modeling of topics. The topic modeling with transfer learning shares as much knowledge as possible between the literature data and social media information for topic modeling. The topics from social media and literature data are used for creating the drug-topic matrix. The probability matrix and syntactic distance measure are given as input to CART, NB, logistic regression and CNN for estimating the drug-gene and drug-side effect association. This proposed work is named as Enhanced Topic Modeling with Transfer Leaning- IPISTON (ETPTL-IPISTON). The simulation findings exhibit that the efficiency of ETPTL-IPISTON than the traditional methods.

Publisher

Centivens Institute of Innovative Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3