Tumor segmentation via enhanced area growth algorithm for lung CT images

Author:

Khorshidi Abdollah

Abstract

Abstract Background Since lung tumors are in dynamic conditions, the study of tumor growth and its changes is of great importance in primary diagnosis. Methods Enhanced area growth (EAG) algorithm is introduced to segment the lung tumor in 2D and 3D modes on 60 patients CT images from four different databases by MATLAB software. The contrast augmentation, color intensity and maximum primary tumor radius determination, thresholding, start and neighbor points’ designation in an array, and then modifying the points in the braid on average are the early steps of the proposed algorithm. To determine the new tumor boundaries, the maximum distance from the color-intensity center point of the primary tumor to the modified points is appointed via considering a larger target region and new threshold. The tumor center is divided into different subsections and then all previous stages are repeated from new designated points to define diverse boundaries for the tumor. An interpolation between these boundaries creates a new tumor boundary. The intersections with the tumor boundaries are firmed for edge correction phase, after drawing diverse lines from the tumor center at relevant angles. Each of the new regions is annexed to the core region to achieve a segmented tumor surface by meeting certain conditions. Results The multipoint-growth-starting-point grouping fashioned a desired consequence in the precise delineation of the tumor. The proposed algorithm enhanced tumor identification by more than 16% with a reasonable accuracy acceptance rate. At the same time, it largely assurances the independence of the last outcome from the starting point. By significance difference of p < 0.05, the dice coefficients were 0.80 ± 0.02 and 0.92 ± 0.03, respectively, for primary and enhanced algorithms. Lung area determination alongside automatic thresholding and also starting from several points along with edge improvement may reduce human errors in radiologists’ interpretation of tumor areas and selection of the algorithm’s starting point. Conclusions The proposed algorithm enhanced tumor detection by more than 18% with a sufficient acceptance ratio of accuracy. Since the enhanced algorithm is independent of matrix size and image thickness, it is very likely that it can be easily applied to other contiguous tumor images. Trial registration PAZHOUHAN, PAZHOUHAN98000032. Registered 4 January 2021, http://pazhouhan.gerums.ac.ir/webreclist/view.action?webreclist_code=19300

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3