Affiliation:
1. Department of Software Engineering, Harbin University of Science and Technology, Rongcheng, China
2. School of Computer Science and Technology, Harbin Institute of Technology, Weihai, China
Abstract
This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15±69.63 cm3, volume overlap error (VOE) 3.5057±1.3719%, average surface distance (ASD) 0.7917±0.2741 mm, root mean square distance (RMSD) 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.
Funder
Nature Science Foundation of Heilongjiang Province of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献