Ultrasound-based radiomics for predicting different pathological subtypes of epithelial ovarian cancer before surgery

Author:

Tang Zhi-Ping,Ma Zhen,He Yun,Liu Ruo-Chuan,Jin Bin-Bin,Wen Dong-Yue,Wen Rong,Yin Hai-Hui,Qiu Cheng-Cheng,Gao Rui-Zhi,Ma Yan,Yang Hong

Abstract

Abstract Objective To evaluate the value of ultrasound-based radiomics in the preoperative prediction of type I and type II epithelial ovarian cancer. Methods A total of 154 patients with epithelial ovarian cancer were enrolled retrospectively. There were 102 unilateral lesions and 52 bilateral lesions among a total of 206 lesions. The data for the 206 lesions were randomly divided into a training set (53 type I + 71 type II) and a test set (36 type I + 46 type II) by random sampling. ITK-SNAP software was used to manually outline the boundary of the tumor, that is, the region of interest, and 4976 features were extracted. The quantitative expression values of the radiomics features were normalized by the Z-score method, and the 7 features with the most differences were screened by using the Lasso regression tenfold cross-validation method. The radiomics model was established by logistic regression. The training set was used to construct the model, and the test set was used to evaluate the predictive efficiency of the model. On the basis of multifactor logistic regression analysis, combined with the radiomics score of each patient, a comprehensive prediction model was established, the nomogram was drawn, and the prediction effect was evaluated by analyzing the area under the receiver operating characteristic curve (AUC), calibration curve and decision curve. Results The AUCs of the training set and test set in the radiomics model and comprehensive model were 0.817 and 0.731 and 0.982 and 0.886, respectively. The calibration curve showed that the two models were in good agreement. The clinical decision curve showed that both methods had good clinical practicability. Conclusion The radiomics model based on ultrasound images has a good predictive effect for the preoperative differential diagnosis of type I and type II epithelial ovarian cancer. The comprehensive model has higher prediction efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3