Noninvasive Assessment of Tumor Histological Grade in Invasive Breast Carcinoma Based on Ultrasound Radiomics and Clinical Characteristics: A Multicenter Study

Author:

Ge Lifang1,Wu Jiangfeng1ORCID,Jin Yun1,Xu Dong2,Wang Zhengping1

Affiliation:

1. Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China

2. Department of Ultrasonography, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China

Abstract

Rationale and Objectives: We aimed to develop and validate prediction models for histological grade of invasive breast carcinoma (BC) based on ultrasound radiomics features and clinical characteristics. Materials and Methods: A number of 383 patients with invasive BC were retrospectively enrolled and divided into a training set (207 patients), internal validation set (90 patients), and external validation set (86 patients). Ultrasound radiomics features were extracted from all the eligible patients. The Boruta method was used to identify the most useful features. Seven classifiers were adopted to developed prediction models. The output of the classifier with best performance was labeled as the radiomics score (Rad-score) and the classifier was selected as the Rad-score model. A combined model combining clinical factors and Rad-score was developed. The performance of the models was evaluated using receiver operating characteristic curve. Results: Seven radiomics features were selected from 788 candidate features. The logistic regression model performing best among the 7 classifiers in the internal and external validation sets was considered as Rad-score model, with areas under the receiver operating characteristic curve (AUC) values of 0.731 and 0.738. The tumor size was screened out as the risk factor and the combined model was developed, with AUC values of 0.721 and 0.737 in the internal and external validation sets. Furthermore, the 10-fold cross-validation demonstrated that the 2 models above were reliable and stable. Conclusion: The Rad-score model and combined model were able to predict histological grade of invasive BC, which may enable tailored therapeutic strategies for patients with BC in routine clinical use.

Funder

Research Program of National Health Commision Capacity Building and Continuing Education Center

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3