Automated assessment of cardiac pathologies on cardiac MRI using T1-mapping and late gadolinium phase sensitive inversion recovery sequences with deep learning

Author:

Paciorek Aleksandra M.,von Schacky Claudio E.,Foreman Sarah C.,Gassert Felix G.,Gassert Florian T.,Kirschke Jan S.,Laugwitz Karl-Ludwig,Geith Tobias,Hadamitzky Martin,Nadjiri Jonathan

Abstract

Abstract Background A deep learning (DL) model that automatically detects cardiac pathologies on cardiac MRI may help streamline the diagnostic workflow. To develop a DL model to detect cardiac pathologies on cardiac MRI T1-mapping and late gadolinium phase sensitive inversion recovery (PSIR) sequences were used. Methods Subjects in this study were either diagnosed with cardiac pathology (n = 137) including acute and chronic myocardial infarction, myocarditis, dilated cardiomyopathy, and hypertrophic cardiomyopathy or classified as normal (n = 63). Cardiac MR imaging included T1-mapping and PSIR sequences. Subjects were split 65/15/20% for training, validation, and hold-out testing. The DL models were based on an ImageNet pretrained DenseNet-161 and implemented using PyTorch and fastai. Data augmentation with random rotation and mixup was applied. Categorical cross entropy was used as the loss function with a cyclic learning rate (1e-3). DL models for both sequences were developed separately using similar training parameters. The final model was chosen based on its performance on the validation set. Gradient-weighted class activation maps (Grad-CAMs) visualized the decision-making process of the DL model. Results The DL model achieved a sensitivity, specificity, and accuracy of 100%, 38%, and 88% on PSIR images and 78%, 54%, and 70% on T1-mapping images. Grad-CAMs demonstrated that the DL model focused its attention on myocardium and cardiac pathology when evaluating MR images. Conclusions The developed DL models were able to reliably detect cardiac pathologies on cardiac MR images. The diagnostic performance of T1 mapping alone is particularly of note since it does not require a contrast agent and can be acquired quickly.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence and myocarditis—a systematic review of current applications;Heart Failure Reviews;2024-08-14

2. Classification of Cardiovascular Diseases from Magnetic Resonance Imaging using Classifiers;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3