Author:
Kumar Nikhil,Creasy Todd,Sun Yezhou,Flowers Melissa,Tallon Luke J,Dunning Hotopp Julie C
Abstract
Abstract
Background
Numerous methods exist for enriching bacterial or mammalian mRNA prior to transcriptome experiments. Yet there persists a need for methods to enrich for mRNA in non-mammalian animal systems. For example, insects contain many important and interesting obligate intracellular bacteria, including endosymbionts and vector-borne pathogens. Such obligate intracellular bacteria are difficult to study by traditional methods. Therefore, genomics has greatly increased our understanding of these bacteria. Efficient subtraction methods are needed for removing both bacteria and insect rRNA in these systems to enable transcriptome-based studies.
Findings
A method is described that efficiently removes >95% of insect rRNA from total RNA samples, as determined by microfluidics and transcriptome sequencing. This subtraction yielded a 6.2-fold increase in mRNA abundance. Such a host rRNA-depletion strategy, in combination with bacterial rRNA depletion, is necessary to analyze transcription of obligate intracellular bacteria. Here, transcripts were identified that arise from a lateral gene transfer of an entire Wolbachia bacterial genome into a Drosophila ananassae chromosome. In this case, an rRNA depletion strategy is preferred over polyA-based enrichment since transcripts arising from bacteria-to-animal lateral gene transfer may not be poly-adenylated.
Conclusions
This enrichment method yields a significant increase in mRNA abundance when poly-A selection is not suitable. It can be used in combination with bacterial rRNA subtraction to enable experiments to simultaneously measure bacteria and insect mRNA in vector and endosymbiont biology experiments.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献