Author:
Kaneko Ayaka,Komatsu Akiko,Itoh Takayuki,Wang Florence Ying
Abstract
AbstractExploration of artworks is enjoyable but often time consuming. For example, it is not always easy to discover the favorite types of unknown painting works. It is not also always easy to explore unpopular painting works which looks similar to painting works created by famous artists. This paper presents a painting image browser which assists the explorative discovery of user-interested painting works. The presented browser applies a new multidimensional data visualization technique that highlights particular ranges of particular numeric values based on association rules to suggest cues to find favorite painting images. This study assumes a large number of painting images are provided where categorical information (e.g., names of artists, created year) is assigned to the images. The presented system firstly calculates the feature values of the images as a preprocessing step. Then the browser visualizes the multidimensional feature values as a heatmap and highlights association rules discovered from the relationships between the feature values and categorical information. This mechanism enables users to explore favorite painting images or painting images that look similar to famous painting works. Our case study and user evaluation demonstrates the effectiveness of the presented image browser.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献