Fine-Grained Visual Computing Based on Deep Learning

Author:

Lv Zhihan1,Qiao Liang1,Singh Amit Kumar2,Wang Qingjun3

Affiliation:

1. Qingdao University, Qingdao, China

2. National Institute of Technology Patna, Patna, India

3. Shenyang Aerospace University, Shenyang, China

Abstract

With increasing amounts of information, the image information received by people also increases exponentially. To perform fine-grained categorization and recognition of images and visual calculations, this study combines the Visual Geometry Group Network 16 model of convolutional neural networks and the vision attention mechanism to build a multi-level fine-grained image feature categorization model. Finally, the TensorFlow platform is utilized to simulate the fine-grained image classification model based on the visual attention mechanism. The results show that in terms of accuracy and required training time, the fine-grained image categorization effect of the multi-level feature categorization model constructed by this study is optimal, with an accuracy rate of 85.3% and a minimum training time of 108 s. In the similarity effect analysis, it is found that the chi-square distance between Log Gabor features and the degree of image distortion show a strong positive correlation; in addition, the validity of this measure is verified. Therefore, through the research in this study, it is found that the constructed fine-grained image categorization model has higher accuracy in image recognition categorization, shorter training time, and significantly better performance in similar feature effects, which provides an experimental reference for the visual computing of fine-grained images in the future.

Funder

National Natural Science Foundation of China

Key Research and Development Plan–Major Scientific and Technological Innovation Projects of ShanDong Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3