Superiority of quadratic over conventional neural networks for classification of gaussian mixture data

Author:

Qi Tianrui,Wang GeORCID

Abstract

AbstractTo enrich the diversity of artificial neurons, a type of quadratic neurons was proposed previously, where the inner product of inputs and weights is replaced by a quadratic operation. In this paper, we demonstrate the superiority of such quadratic neurons over conventional counterparts. For this purpose, we train such quadratic neural networks using an adapted backpropagation algorithm and perform a systematic comparison between quadratic and conventional neural networks for classificaiton of Gaussian mixture data, which is one of the most important machine learning tasks. Our results show that quadratic neural networks enjoy remarkably better efficacy and efficiency than conventional neural networks in this context, and potentially extendable to other relevant applications.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Visual Arts and Performing Arts,Medicine (miscellaneous),Computer Science (miscellaneous),Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on frame prediction technology of video coding based on convolutional neural network;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

2. A Big Data Sharing Architecture Based on Federal Learning in State Grid;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3