WinoGrande: An Adversarial Winograd Schema Challenge at Scale

Author:

Sakaguchi Keisuke,Le Bras Ronan,Bhagavatula Chandra,Choi Yejin

Abstract

The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense.To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4 – 79.1%, which are ∼15-35% (absolute) below human performance of 94.0%, depending on the amount of the training data allowed (2% – 100% respectively).Furthermore, we establish new state-of-the-art results on five related benchmarks — WSC (→ 90.1%), DPR (→ 93.1%), COPA(→ 90.6%), KnowRef (→ 85.6%), and Winogender (→ 97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DeepNet: Scaling Transformers to 1,000 Layers;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. PrimeNet: A Framework for Commonsense Knowledge Representation and Reasoning Based on Conceptual Primitives;Cognitive Computation;2024-08-30

3. Testing Stimulus Equivalence in Transformer-Based Agents;Future Internet;2024-08-09

4. Efficient Pretraining and Finetuning of Quantized LLMs with Low-Rank Structure;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

5. A Lightweight Chinese Multimodal Textual Defense Method based on Contrastive-Adversarial Training;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3