Multiple fish tracking with an NACA airfoil model for collective behavior analysis

Author:

Terayama Kei,Habe Hitoshi,Sakagami Masa-aki

Abstract

Abstract We propose a visual tracking method with an NACA airfoil model for dense fish schools in which occlusions occur frequently. Although much progress has been made for tracking multiple objects, it remains a challenging task to track individuals due to factors such as occlusion and target appearance variation. In this paper, we first introduce a NACA airfoil model as a deformable appearance model of fish. For occluded fish, we estimate their positions, angles, and postures with template matching and simulated annealing algorithms to effectively optimize their parameters. To improve performance of tracking, we repeatedly track fish with the parameter estimation algorithm forwards and backwards. We prepared two real fish scenes in which the average number of fish is over 25 in each frame and multiple fish superimpose over 50 times. Experimental results for the scenes show that fish are practically tracked with our method compared to a tracking method based on a mixture particle filter. Over 75 % of fish in each scene have been tracked throughout the scene, and the average difference is less than 4 % of the mean body length of the school.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Computer Vision and Pattern Recognition

Reference15 articles.

1. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517(3): 71–140.

2. Strandburg-Peshkin A, Twomey CR, Bode NW, Kao AB, Katz Y, Ioannou CC, Rosenthal SB, Torney CJ, Wu HS, Levin SA, et al. (2013) Visual sensory networks and effective information transfer in animal groups. Curr Biol 23(17): 709–711.

3. Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14(2): 186–204.

4. Vermaak J, Doucet A, Pérez P (2003) Maintaining multimodality through mixture tracking In: Proc 9th IEEE Int Conf Comput Vis, 1110–1116. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1238473&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1238473.

5. Okuma K, Taleghani A, De Freitas N, Little JJ, Lowe DG (2004) A boosted particle filter: Multitarget detection and tracking In: Proc 8th European Conf Comput Vis, 28–39. http://link.springer.com/chapter/10.1007/978-3-540-24670-1_3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3