Author:
Terayama Kei,Habe Hitoshi,Sakagami Masa-aki
Abstract
Abstract
We propose a visual tracking method with an NACA airfoil model for dense fish schools in which occlusions occur frequently. Although much progress has been made for tracking multiple objects, it remains a challenging task to track individuals due to factors such as occlusion and target appearance variation. In this paper, we first introduce a NACA airfoil model as a deformable appearance model of fish. For occluded fish, we estimate their positions, angles, and postures with template matching and simulated annealing algorithms to effectively optimize their parameters. To improve performance of tracking, we repeatedly track fish with the parameter estimation algorithm forwards and backwards. We prepared two real fish scenes in which the average number of fish is over 25 in each frame and multiple fish superimpose over 50 times. Experimental results for the scenes show that fish are practically tracked with our method compared to a tracking method based on a mixture particle filter. Over 75 % of fish in each scene have been tracked throughout the scene, and the average difference is less than 4 % of the mean body length of the school.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Computer Vision and Pattern Recognition
Reference15 articles.
1. Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517(3): 71–140.
2. Strandburg-Peshkin A, Twomey CR, Bode NW, Kao AB, Katz Y, Ioannou CC, Rosenthal SB, Torney CJ, Wu HS, Levin SA, et al. (2013) Visual sensory networks and effective information transfer in animal groups. Curr Biol 23(17): 709–711.
3. Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14(2): 186–204.
4. Vermaak J, Doucet A, Pérez P (2003) Maintaining multimodality through mixture tracking In: Proc 9th IEEE Int Conf Comput Vis, 1110–1116. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1238473&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1238473.
5. Okuma K, Taleghani A, De Freitas N, Little JJ, Lowe DG (2004) A boosted particle filter: Multitarget detection and tracking In: Proc 8th European Conf Comput Vis, 28–39. http://link.springer.com/chapter/10.1007/978-3-540-24670-1_3.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献