Author:
Habe Hitoshi,Takeuchi Yoshiki,Terayama Kei,Sakagami Masa-aki, , ,
Abstract
We propose a pose estimation method using a National Advisory Committee for Aeronautics (NACA) airfoil model for fish schools. This method allows one to understand the state in which fish are swimming based on their posture and dynamic variations. Moreover, their collective behavior can be understood based on their posture changes. Therefore, fish pose is a crucial indicator for collective behavior analysis. We use the NACA model to represent the fish posture; this enables more accurate tracking and movement prediction owing to the capability of the model in describing posture dynamics. To fit the model to video data, we first adopt the DeepLabCut toolbox to detect body parts (i.e., head, center, and tail fin) in an image sequence. Subsequently, we apply a particle filter to fit a set of parameters from the NACA model. The results from DeepLabCut, i.e., three points on a fish body, are used to adjust the components of the state vector. This enables more reliable estimation results to be obtained when the speed and direction of the fish change abruptly. Experimental results using both simulation data and real video data demonstrate that the proposed method provides good results, including when rapid changes occur in the swimming direction.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献