Author:
Ardiyanto Igi,Adji Teguh Bharata
Abstract
Abstract
This paper proposes a deep learning-based efficient and compact solution for road scene segmentation problem, named deep residual coalesced convolutional network (RCC-Net). Initially, the RCC-Net performs dimensionality reduction to compress and extract relevant features, from which it is subsequently delivered to the encoder. The encoder adopts the residual network style for efficient model size. In the core of each residual network, three different convolutional layers are simultaneously coalesced for obtaining broader information. The decoder is then altered to upsample the encoder for pixel-wise mapping from the input images to the segmented output. Experimental results reveal the efficacy of the proposed network over the state-of-the-art methods and its capability to be deployed in an average system.
Publisher
Springer Science and Business Media LLC
Subject
Computer Vision and Pattern Recognition
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献