LEARNING DENSE CONTEXTUAL FEATURES FOR SEMANTIC SEGMENTATION

Author:

YALİM KELES Hacer1ORCID,LİM Long Ang1

Affiliation:

1. ANKARA UNIVERSITY

Abstract

Semantic segmentation, which is one of the key problems in computer vision, has been applied in various application domains such as autonomous driving, robot navigation, or medical imagery, to name a few. Recently, deep learning, especially deep neural networks, have shown significant performance improvement over conventional semantic segmentation methods. In this paper, we present a novel encoder-decoder type deep neural network-based method, namely XSeNet, that can be trained end-to-end in a supervised manner. We adapt ResNet-50 layers as the encoder and design a cascaded decoder that composes of the stack of the X-Modules, which enables the network to learning dense contextual information and having wider field-of-view. We evaluate our method using CamVid dataset, and experimental results reveal that our method can segment most part of the scene accurately and even outperforms previous state-of-the art methods.

Publisher

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering

Subject

General Medicine

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3