Author:
Hu Siyi,Delorme Nathalie,Liu Zhenzhen,Liu Tao,Velasco-Gonzalez Cruz,Garai Jone,Pullikuth Ashok,Koochekpour Shahriar
Abstract
Abstract
Background
Factors responsible for invasive and metastatic progression of prostate cancer (PCa) remain largely unknown. Previously, we reported cloning of prosaposin (PSAP) and its genomic amplification and/or overexpression in several androgen-independent metastatic PCa cell lines and lymph node metastases. PSAP is the lysosomal precursor of saposins, which serve as activators for lysosomal hydrolases involved in the degradation of ceramide (Cer) and other sphingolipids.
Results
Our current data show that, in metastatic PCa cells, stable down-modulation of PSAP by RNA-interference via a lysosomal proteolysis-dependent pathway decreased β1A-integrin expression, its cell-surface clustering, and adhesion to basement membrane proteins; led to disassembly of focal adhesion complex; and decreased phosphorylative activity of focal adhesion kinase and its downstream adaptor molecule, paxillin. Cathepsin D (CathD) expression and proteolytic activity, migration, and invasion were also significantly decreased in PSAP knock-down cells. Transient-transfection studies with β1A integrin- or CathD-siRNA oligos confirmed the cause and effect relationship between PSAP and CathD or PSAP and Cer-β1A integrin, regulating PCa cell migration and invasion.
Conclusion
Our findings suggest that by a coordinated regulation of Cer levels, CathD and β1A-integrin expression, and attenuation of "inside-out" integrin-signaling pathway, PSAP is involved in PCa invasion and therefore might be used as a molecular target for PCa therapy.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Reference42 articles.
1. Kishimoto Y, Hiraiwa M, O'Brien JS: Saposins: Structure, function, distribution and molecular genetics. J Lipid Res. 1992, 33: 1255-1267.
2. Koochekpour S: PSAP (Prosaposin (variant Gaucher disease and variant metachromatic leukodystrophy)). Atlas Genet Cytogenet Oncol Haematol. 2006, http://AtlasGeneticsOncology.org/Genes/PSAPID42980ch10q22.html
3. Schuette CG, Pierstorff B, Huettler S, Sandhoff K: Sphingolipid activator proteins: proteins with complex functions in lipid degradation and skin biogenesis. Glycobiol. 2001, 11: 81R-90R. 10.1093/glycob/11.6.81R.
4. Gopalakrishnan MM, Grosch HW, Locatelli-Hoops S, Werth N, Smolenov E, Nettersheim M, Sandhoff K, Hasilik A: Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation. Biochem J. 2004, 383: 507-515. 10.1042/BJ20040175
5. Hiraiwa M, Martin BM, Kishimoto Y, Conner GE, Tsuj S, O'Brien JS: Lysosomal proteolysis of prosaposin, the precursor of saposins (aphingolipid activator proteins): its mechanism and inhibition by ganglioside. Arch Biochem Biophys. 1997, 341: 17-24. 10.1006/abbi.1997.9958
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献