Tumor penetration and epidermal growth factor receptor saturation by panitumumab correlate with antitumor activity in a preclinical model of human cancer

Author:

Freeman Daniel J,McDorman Kevin,Ogbagabriel Selam,Kozlosky Carl,Yang Bing-Bing,Doshi Sameer,Perez-Ruxio Juan Jose,Fanslow William,Starnes Charlie,Radinsky Robert

Abstract

Abstract Background Successful treatment of solid tumors relies on the ability of drugs to penetrate into the tumor tissue. Methods We examined the correlation of panitumumab (an anti-epidermal growth factor [EGFR] antibody) tumor penetration and EGFR saturation, a potential obstacle in large molecule drug delivery, using pharmacokinetics, pharmacodynamics, and tumor growth rate in an A431 epidermoid carcinoma xenograft model of human cancer. To determine receptor saturation, receptor occupancy, and levels of proliferation markers, immunohistochemical and flow cytometric methods were used. Pharmacokinetic data and modeling were used to calculate growth characteristics of panitumumab-treated tumors. Results Treatment with panitumumab in vivo inhibited pEGFR, Ki67 and pMAPK levels vs control. Tumor penetration and receptor saturation were dose- and time-dependent, reaching 100% and 78%, respectively. Significant tumor inhibition and eradication (p < 0.05) were observed; plasma concentration associated with tumor eradication was estimated to be 0.2 μg/ml. The tumor inhibition model was able to describe the mean tumor growth and death rates. Conclusions These data demonstrate that the antitumor activity of panitumumab correlates with its ability to penetrate into tumor tissue, occupy and inhibit activation of EGFR, and inhibit markers of proliferation and MAPK signaling.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Reference30 articles.

1. Tunggal JK, Cowan DS, Shaikh H, Tannock IF: Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Canc Res. 1999, 5: 1583-1586.

2. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM: High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001, 61: 4750-4755.

3. Beckman RA, Weiner LM, Davis HM: Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007, 109: 170-179. 10.1002/cncr.22402

4. Baker SD, Hu S: Pharmacokinetic considerations for new targeted therapies. Clin Pharmacol Ther. 2009, 85: 208-211. 10.1038/clpt.2008.242

5. Siegel-Lakhai WS, Beijnen JH, Schellens JH: Current knowledge and future directions of the selective epidermal growth factor receptor inhibitors erlotinib (Tarceva) and gefitinib (Iressa). Oncologist. 2005, 10: 579-589. 10.1634/theoncologist.10-8-579

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3