Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

Author:

Yin Weihong,Cheepala Satish,Roberts Jennifer N,Syson-Chan Keith,DiGiovanni John,Clifford John L

Abstract

Abstract Background Squamous cell carcinoma (SCC) of the skin is the most aggressive form of non-melanoma skin cancer (NMSC), and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3) in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. Results To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK), to non-tumorigenic transformed skin cells (HaCaT), to highly tumorigenic cells (SRB1-m7 and SRB12-p9) and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN). The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM). This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. Conclusion This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or protein to tumor cells could induce apoptosis and/or sensitize those cells to the apoptotic effects of cancer therapeutic agents, raising the possibility of using S3DN as an adjunct for treatment of skin SCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3