Costunolide, a Sesquiterpene Lactone, Suppresses Skin Cancer via Induction of Apoptosis and Blockage of Cell Proliferation

Author:

Lee Sung HoORCID,Cho Young-Chang,Lim Jae Sung

Abstract

Costunolide is a naturally occurring sesquiterpene lactone that demonstrates various therapeutic actions such as anti-oxidative, anti-inflammatory, and anti-cancer properties. Costunolide has recently emerged as a potential anti-cancer agent in various types of cancer, including colon, lung, and breast cancer. However, its mode of action in skin cancer remains unclear. To determine the anti-cancer potential of costunolide in skin cancer, human epidermoid carcinoma cell line A431 was treated with costunolide. A lactate dehydrogenase assay showed that costunolide diminished the viability of A431 cells. Apoptotic cells were detected by annexin V/propidium iodide double staining and Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay assay, and costunolide induced cell apoptosis via activation of caspase-3 as well as induction of poly-ADP ribose polymerase cleavage in A431 cells. In addition, costunolide elevated the level of the pro-apoptotic protein Bax while lowering the levels of anti-apoptotic proteins, including Bcl-2 and Bcl-xL. To address the inhibitory effect of costunolide on cell proliferation and survival, various signaling pathways, including mitogen-activated protein kinases, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NF-κB), and Akt, were investigated. Costunolide activated the p38 and c-Jun N-terminal kinase pathways while suppressing the extracellular signal-regulated kinase (ERK), STAT3, NF-κB, and Akt pathways in A431 cells. Consequently, it was inferred that costunolide suppresses cell proliferation and survival via these signaling pathways. Taken together, our data clearly indicated that costunolide exerts anti-cancer activity in A431 cells by suppressing cell growth via inhibition of proliferation and promotion of apoptosis. Therefore, it may be employed as a potentially tumor-specific candidate in skin cancer treatment.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference70 articles.

1. Updates on the Management of Non-Melanoma Skin Cancer (NMSC)

2. Basal Cell Carcinoma: Pathogenesis, Epidemiology, Clinical Features, Diagnosis, Histopathology, and Management;Marzuka;Yale J. Biol. Med.,2015

3. Non-Melanoma Skin Cancer Incidence and Impact of Skin Cancer Screening on Incidence

4. Metatypical basal cell carcinoma: a clinical review

5. Management of High-Risk Cutaneous Squamous Cell Carcinoma;Jennings;J. Clin. Aesthet. Dermatol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3