Inhibition of Oesophageal Squamous Cell Carcinoma Progression by in vivo Targeting of Hyaluronan Synthesis

Author:

Twarock Sören,Freudenberger Till,Poscher Eva,Dai Guang,Jannasch Katharina,Dullin Christian,Alves Frauke,Prenzel Klaus,Knoefel Wolfram T,Stoecklein Nikolas H,Savani Rashmin C,Homey Bernhard,Fischer Jens W

Abstract

Abstract Background Oesophageal cancer is a highly aggressive tumour entity with at present poor prognosis. Therefore, novel treatment options are urgently needed. Hyaluronan (HA) is a polysaccharide present in the matrix of human oesophageal squamous cell carcinoma (ESCC). Importantly, in vitro ESCC cells critically depend on HA synthesis to maintain the proliferative phenotype. The aim of the present study is (1) to study HA-synthase (HAS) expression and regulation in human ESCC, and (2) to translate the in vitro results into a mouse xenograft model of human ESCC to study the effects of systemic versus tumour targeted HAS inhibition on proliferation and distribution of tumour-bound and stromal hyaluronan. Methods mRNA expression was investigated in human ESCC biopsies by semiquantitative real-time RT PCR. Furthermore, human ESCC were xenografted into NMRI nu/nu mice. The effects on tumour progression and morphology of 4-methylumbelliferone (4-MU), an inhibitor of HA-synthesis, and of lentiviral knock down of HA-synthase 3 (HAS3), the main HAS isoform in the human ESCC tissues and the human ESCC cell line used in this study, were determined. Tumour progression was monitored by calliper measurements and by flat-panel detector volume computed tomography (fpVCT). HA content, cellular composition and proliferation (Ki67) were determined histologically. Results mRNA of HAS isoform 3 (HAS3) was upregulated in human ESCC biopsies and HAS3 mRNA was positively correlated to expression of the epidermal growth factor (EGF) receptor. EGF was also proven to be a strong inductor of HAS3 mRNA expression in vitro. During the course of seven weeks, 4-MU inhibited progression of xenograft tumours. Interestingly, remodelling of the tumour into a more differentiated phenotype and inhibition of cell proliferation were observed. Lentiviral knockdown of HAS3 in human ESCC cells prior to xenografting mimicked all effects of 4-MU treatment suggesting that hyaluronan produced by ESCC is accountable for major changes in tumour environment in vivo. Conclusions Systemic inhibition of HA-synthesis and knockdown of tumour cell HAS3 cause decreased ESCC progression accompanied by tumour stroma remodelling and may therefore be used in novel approaches to ESCC therapy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3