Analysis of codon usage bias of WRKY transcription factors in Helianthus annuus

Author:

Gao Yue,Lu Yan,Song Yang,Jing Lan

Abstract

Abstract Background The phenomenon of codon usage bias is known to exist in many genomes and is mainly determined by mutation and selection. Codon usage bias analysis is a suitable strategy for identifying the principal evolutionary driving forces in different organisms. Sunflower (Helianthus annuus L.) is an annual crop that is cultivated worldwide as ornamentals, food plants and for their valuable oil. The WRKY family genes in plants play a central role in diverse regulation and multiple stress responses. Evolutionary analysis of WRKY family genes of H. annuus can provide rich genetic information for developing hybridization resources of the genus Helianthus. Results Bases composition analysis showed the average GC content of WRKY genes of H. annuus was 43.42%, and the average GC3 content was 39.60%, suggesting that WRKY gene family prefers A/T(U) ending codons. There were 29 codons with relative synonymous codon usage (RSCU) greater than 1 and 22 codons ending with A and U base. The effective number of codons (ENC) and codon adaptation index (CAI) in WRKY genes ranged from 43.47–61.00 and 0.14–0.26, suggesting that the codon bias was weak and WRKY genes expression level was low. Neutrality analysis found a significant correlation between GC12 and GC3. ENC-plot showed most genes on or close to the expected curve, suggesting that mutational bias played a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that the usage of AT and GC was disproportionate. A total of three codons were identified as the optimal codons. Conclusion Apart from natural selection effects, most of the genetic evolution in the H. annuus WRKY genome might be driven by mutation pressure. Our results provide a theoretical foundation for elaborating the genetic architecture and mechanisms of H. annuus and contributing to enrich H. annuus genetic resources.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3