Author:
Hovorkova Lenka,Winkowska Lucie,Skorepova Justina,Krumbholz Manuela,Benesova Adela,Polivkova Vaclava,Alten Julia,Bardini Michela,Meyer Claus,Kim Rathana,Trahair Toby N.,Clappier Emmanuelle,Chiaretti Sabina,Henderson Michelle,Sutton Rosemary,Sramkova Lucie,Stary Jan,Polakova Katerina Machova,Marschalek Rolf,Metzler Markus,Cazzaniga Giovanni,Cario Gunnar,Trka Jan,Zaliova Marketa,Zuna Jan
Abstract
Abstract
Background
The BCR::ABL1 is a hallmark of chronic myeloid leukemia (CML) and is also found in acute lymphoblastic leukemia (ALL). Most genomic breaks on the BCR side occur in two regions - Major and minor - leading to p210 and p190 fusion proteins, respectively.
Methods
By multiplex long-distance PCR or next-generation sequencing technology we characterized the BCR::ABL1 genomic fusion in 971 patients (adults and children, with CML and ALL: pediatric ALL: n = 353; pediatric CML: n = 197; adult ALL: n = 166; adult CML: n = 255 patients) and designed “Break-App” web tool to allow visualization and various analyses of the breakpoints. Pearson’s Chi-Squared test, Kolmogorov-Smirnov test and logistic regression were used for statistical analyses.
Results
Detailed analysis showed a non-random distribution of breaks in both BCR regions, whereas ABL1 breaks were distributed more evenly. However, we found a significant difference in the distribution of breaks between CML and ALL. We found no association of breakpoints with any type of interspersed repeats or DNA motifs. With a few exceptions, the primary structure of the fusions suggests non-homologous end joining being responsible for the BCR and ABL1 gene fusions. Analysis of reciprocal ABL1::BCR fusions in 453 patients showed mostly balanced translocations without major deletions or duplications.
Conclusions
Taken together, our data suggest that physical colocalization and chromatin accessibility, which change with the developmental stage of the cell (hence the difference between ALL and CML), are more critical factors influencing breakpoint localization than presence of specific DNA motifs.
Funder
Czech Health Research Council
Charles University
MH CZ – DRO
Ministry of Health, Czech Republic
National Institute for Cancer Research
Cancer Australia
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Burmeister T, Groger D, Kuhn A, Hoelzer D, Thiel E, Reinhardt R. Fine structure of translocation breakpoints within the major breakpoint region in BCR-ABL1-positive leukemias. DNA Repair (Amst). 2011;10(11):1131–7.
2. Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simoes MA, et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia. 2010;24(10):1742–50.
3. Krumbholz M, Goerlitz K, Albert C, Lawlor J, Suttorp M, Metzler M. Large amplicon droplet digital PCR for DNA-based monitoring of pediatric chronic myeloid leukaemia. J Cell Mol Med. 2019;14(10):14321.
4. Ross DM, O’Hely M, Bartley PA, Dang P, Score J, Goyne JM, et al. Distribution of genomic breakpoints in chronic myeloid leukemia: analysis of 308 patients. Leukemia. 2013;27(10):2105–7.
5. Krumbholz M, Karl M, Tauer JT, Thiede C, Rascher W, Suttorp M, et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer. 2012;51(11):1045–53.