Spatially resolved, high-dimensional transcriptomics sorts out the evolution of biphasic malignant pleural mesothelioma: new paradigms for immunotherapy

Author:

Torricelli F,Donati B,Reggiani F,Manicardi V,Piana S,Valli R,Lococo F,Ciarrocchi Alessia

Abstract

Abstract Background Malignant Pleural Mesothelioma (MPM) is a dreadful disease escaping the classical genetic model of cancer evolution and characterized by wide heterogeneity and transcriptional plasticity. Clinical evolution of MPM is marked by a progressive transdifferentiation that converts well differentiated epithelioid (E) cells into undifferentiated and pleomorphic sarcomatoid (S) phenotypes. Catching the way this transition takes place is necessary to understand how MPM develops and progresses and it is mandatory to improve patients’ management and life expectancy. Bulk transcriptomic approaches, while providing a significant overview, failed to resolve the timing of this evolution and to identify the hierarchy of molecular events through which this transition takes place. Methods We applied a spatially resolved, high-dimensional transcriptomic approach to study MPM morphological evolution. 139 regions across 8 biphasic MPMs (B-MPMs) were profiled using the GeoMx™Digital Spatial Profiler to reconstruct the positional context of transcriptional activities and the spatial topology of MPM cells interactions. Validation was conducted on an independent large cohort of 84 MPMs by targeted digital barcoding analysis. Results Our results demonstrated the existence of a complex circular ecosystem in which, within a strong asbestos-driven inflammatory environment, MPM and immune cells affect each other to support S-transdifferentiation. We also showed that TGFB1 polarized M2-Tumor Associated Macrophages foster immune evasion and that TGFB1 expression correlates with reduced survival probability. Conclusions Besides providing crucial insights into the multidimensional interactions governing MPM clinical evolution, these results open new perspectives to improve the use of immunotherapy in this disease.

Funder

Bando per la valorizzazione della Ricerca Istituzionale in ambito oncologico 2019

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3