DC electrical stimulation enhances proliferation and differentiation on N2a and MC3T3 cell lines

Author:

Martín Daniel,Bocio-Nuñez J.,Scagliusi Santiago F.,Pérez Pablo,Huertas Gloria,Yúfera Alberto,Giner Mercè,Daza Paula

Abstract

Abstract Background Electrical stimulation is a novel tool to promote the differentiation and proliferation of precursor cells. In this work we have studied the effects of direct current (DC) electrical stimulation on neuroblastoma (N2a) and osteoblast (MC3T3) cell lines as a model for nervous and bone tissue regeneration, respectively. We have developed the electronics and encapsulation of a proposed stimulation system and designed a setup and protocol to stimulate cell cultures. Methods Cell cultures were subjected to several assays to assess the effects of electrical stimulation on them. N2a cells were analyzed using microscope images and an inmunofluorescence assay, differentiated cells were counted and neurites were measured. MC3T3 cells were subjected to an AlamarBlue assay for viability, ALP activity was measured, and a real time PCR was carried out. Results Our results show that electrically stimulated cells had more tendency to differentiate in both cell lines when compared to non-stimulated cultures, paired with a promotion of neurite growth and polarization in N2a cells and an increase in proliferation in MC3T3 cell line. Conclusions These results prove the effectiveness of electrical stimulation as a tool for tissue engineering and regenerative medicine, both for neural and bone injuries. Bone progenitor cells submitted to electrical stimulation have a higher tendency to differentiate and proliferate, filling the gaps present in injuries. On the other hand, neuronal progenitor cells differentiate, and their neurites can be polarized to follow the electric field applied.

Funder

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3