Transcription factor KLF15 inhibits the proliferation and migration of gastric cancer cells via regulating the TFAP2A-AS1/NISCH axis

Author:

Zhao Xin,Chen Linlin,Wu Jingxun,You Jun,Hong Qingqi,Ye Feng

Abstract

Abstract Background Recently, overwhelming evidence supports that long noncoding RNAs (lncRNAs) play crucial roles in the occurrence and progression of tumors. However, the role and mechanism of lncRNA TFAP2A-AS1 in human gastric cancer (GC) remains unclear. Thus, the biological role and regulatory mechanisms of TFAP2A-AS1 in GC were explored. Methods Quantitative real-time PCR (qPCR) was applied to detect gene expression. Western blot was used to measure protein expression. Cell proliferation and migration were determined by functional assays. Fluorescence in situ hybridization (FISH) assays were performed to determine the subcellular distribution of TFAP2A-AS1 in GC. Mechanism investigations were conducted to explore the downstream genes of TFAP2A-AS1 and the upstream transcription factor of TFAP2A-AS1 in GC cells. Results TFAP2A-AS1 inhibits the proliferation and migration of GC cells. In the downstream regulation mechanism, miR-3657 was verified as the downstream gene of TFAP2A-AS1 and NISCH as the target of miR-3657. NISCH also suppresses cell proliferation and migration in GC. In the upstream regulation mechanism, transcription factor KLF15 positively mediates TFAP2A-AS1 to suppress GC cell proliferation and migration. Conclusion KLF15-mediated TFAP2A-AS1 hampers cell proliferation and migration in GC via miR-3657/NISCH axis.

Funder

the first affiliated hospital of xiamen university, xiamen cancer hospital young talents research fund

research fund of the cancer hospital, the first affiliated hospital of xiamen university

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3