Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number

Author:

Hawlina Simon,Chowdhury Helena H.,Smrkolj Tomaž,Zorec Robert

Abstract

AbstractIn 2009, new EU legislation regulating advanced therapy medicinal products (ATMPs), consisting of gene therapy, tissue engineering and cell-based medicines, was introduced. Although less than 20 ATMPs were authorized since that time, the awarding of the Nobel Prize for Physiology or Medicine in 2018 revived interest in developing new cancer immunotherapies involving significant manipulation of the patient's own immune cells, including lymphocytes and dendritic cells. The lymphocytes are mainly thought to directly affect tumour cells, dendritic cells are involved in indirect mechanisms by antigen presentation to other leukocytes orchestrating the immune response. It is the latter cells that are the focus of this brief review. Based on the recent results of our study treating patients with castration-resistant prostate cancer (CRPC) with an immunohybridoma cell construct (termed aHyC), produced by electrofusion of autologous tumour and dendritic cells, we compare their effectiveness with a matched documented control group of patients. The results revealed that cancer-specific survival and the time to next in-line therapy (TTNT) were both significantly prolonged versus controls. When patients were observed for longer periods since the time of diagnosis of CRPC, 20% of patients had not yet progressed to the next in-line therapy even though the time under observation was ~ 80 months. Interestingly, analysis of survival of patients revealed that the effectiveness of treatment was independent of the number of cells in the vaccine used for treatment. It is concluded that autologous dendritic cell-based immunotherapy is a new possibility to treat not only CRPC but also other solid tumours.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3