Feasibility Study for the Use of Gene Electrotransfer and Cell Electrofusion as a Single-Step Technique for the Generation of Activated Cancer Cell Vaccines

Author:

Ušaj MarkoORCID,Pavlin MojcaORCID,Kandušer MašaORCID

Abstract

AbstractCell-based therapies hold great potential for cancer immunotherapy. This approach is based on manipulation of dendritic cells to activate immune system against specific cancer antigens. For the development of an effective cell vaccine platform, gene transfer, and cell fusion have been used for modification of dendritic or tumor cells to express immune (co)stimulatory signals and to load dendritic cells with tumor antigens. Both, gene transfer and cell fusion can be achieved by single technique, a cell membrane electroporation. The cell membrane exposed to external electric field becomes temporarily permeable, enabling introduction of genetic material, and also fusogenic, enabling the fusion of cells in the close contact. We tested the feasability of combining gene electrotransfer and electrofusion into a single-step technique and evaluated the effects of electroporation buffer, pulse parameters, and cell membrane fluidity for single or combined method of gene delivery or cell fusdion. We determined the percentage of fused cells expressing green fluorescence protein (GFP) in a murine cell model of melanoma B16F1, cell line used in our previous studies. Our results suggest that gene electrotransfer and cell electrofusion can be applied in a single step. The percentage of viable hybrid cells expressing GFP depends on electric pulse parameters and the composition of the electroporation buffer. Furthermore, our results suggest that cell membrane fluidity is not related to the efficiency of the gene electrotransfer and electrofusion. The protocol is compatible with microfluidic devices, however further optimization of electric pulse parameters and buffers is still needed. Graphical Abstract

Funder

Slovenian Research and Innovation Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3