Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure

Author:

Liu AnikaORCID,Walter Moritz,Wright Peter,Bartosik Aleksandra,Dolciami Daniela,Elbasir Abdurrahman,Yang Hongbin,Bender Andreas

Abstract

Abstract Background Drug-induced liver injury (DILI) is a major safety concern characterized by a complex and diverse pathogenesis. In order to identify DILI early in drug development, a better understanding of the injury and models with better predictivity are urgently needed. One approach in this regard are in silico models which aim at predicting the risk of DILI based on the compound structure. However, these models do not yet show sufficient predictive performance or interpretability to be useful for decision making by themselves, the former partially stemming from the underlying problem of labeling the in vivo DILI risk of compounds in a meaningful way for generating machine learning models. Results As part of the Critical Assessment of Massive Data Analysis (CAMDA) “CMap Drug Safety Challenge” 2019 (http://camda2019.bioinf.jku.at), chemical structure-based models were generated using the binarized DILIrank annotations. Support Vector Machine (SVM) and Random Forest (RF) classifiers showed comparable performance to previously published models with a mean balanced accuracy over models generated using 5-fold LOCO-CV inside a 10-fold training scheme of 0.759 ± 0.027 when predicting an external test set. In the models which used predicted protein targets as compound descriptors, we identified the most information-rich proteins which agreed with the mechanisms of action and toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs), one of the most important drug classes causing DILI, stress response via TP53 and biotransformation. In addition, we identified multiple proteins involved in xenobiotic metabolism which could be novel DILI-related off-targets, such as CLK1 and DYRK2. Moreover, we derived potential structural alerts for DILI with high precision, including furan and hydrazine derivatives; however, all derived alerts were present in approved drugs and were over specific indicating the need to consider quantitative variables such as dose. Conclusion Using chemical structure-based descriptors such as structural fingerprints and predicted protein targets, DILI prediction models were built with a predictive performance comparable to previous literature. In addition, we derived insights on proteins and pathways statistically (and potentially causally) linked to DILI from these models and inferred new structural alerts related to this adverse endpoint.

Funder

National Centre for the Replacement, Refinement and Reduction of Animals in Research

GlaxoSmithKline

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3